納米材料粒度測試儀器和方法大全
點擊次數(shù):3270 發(fā)布時間:2021-09-13
納米材料粒度測試儀器和方法大全
納米材料是指三維空間尺寸中至少有一維處于納米數(shù)量級(1~100nm),或由納米結(jié)構(gòu)單元組成的具有特殊性質(zhì)的材料,被譽為“21世紀最重要的戰(zhàn)略性高技術(shù)材料之一”。當材料的粒度大小達到納米尺度時,將具有傳統(tǒng)微米級尺度材料所不具備的小尺寸效應(yīng)、量子尺寸效應(yīng)、表面效應(yīng)等諸多特性,這些特異效應(yīng)將為新材料的開發(fā)應(yīng)用提供嶄新思路。
目前,納米材料已成為材料研發(fā)以及產(chǎn)業(yè)化最基本的構(gòu)成部分,其中納米材料的粒度則是其最重要的表征參數(shù)之一。本文根據(jù)不同的測試原理闡述了8種納米材料粒度測試方法,并分析了不同粒度測試方法的優(yōu)缺點及適用范圍。
1.電子顯微鏡法:是對納米材料尺寸、形貌、表面結(jié)構(gòu)和微區(qū)化學成分研究常用的方法,一般包括掃描電子顯微鏡法(SEM)和透射電子顯微鏡法(TEM)。對于很小的顆粒粒徑,特別是僅由幾個原子組成的團簇,采用掃描隧道電鏡進行測量。計算電鏡所測量的粒度主要采用交叉法、最大交叉長度平均值法、粒徑分布圖法等。
模板劑聚苯乙烯球的SEM圖
硅微球的TEM圖
優(yōu)點:該方法是一種顆粒度觀測的絕對方法,因而具有可靠性和直觀性。
缺點:測量結(jié)果缺乏整體統(tǒng)計性;滴樣前必須做超聲波分散;對一些不耐強電子束轟擊的納米顆粒樣品較難得到準確的結(jié)果。
2.激光粒度分析法:是基于Fraunhofer衍射和Mie氏散射理論,根據(jù)激光照射到顆粒后,顆粒能使激光產(chǎn)生衍射或散射的現(xiàn)象來測試粒度分布的。因此相應(yīng)的激光粒度分析儀分為激光衍射式和激光動態(tài)散射式兩類。一般衍射式粒度儀適于對粒度在5μm以上的樣品分析,而動態(tài)激光散射儀則對粒度在5μm以下的納米、亞微米顆粒樣品分析較為準確。所以納米粒子的測量一般采用動態(tài)激光散射儀。
納米激光粒度儀結(jié)構(gòu)圖
優(yōu)點:樣品用量少、自動化程度高、重復性好,可在線分析等。
缺點:不能分析高濃度的粒度及粒度分布,分析過程中需要稀釋,從而帶來一定誤差。
3.動態(tài)光散射法:動態(tài)光散射也稱光子相關(guān)光譜,是通過測量樣品散射光強度的起伏變化得出樣品的平均粒徑及粒徑分布。液體中納米粒子以布朗運動為主,其運動速度取決于粒徑、溫度和黏度系數(shù)等因素。在恒定溫度和黏度條件下,通過光子相關(guān)譜法測定顆粒的擴散系數(shù)就可獲得顆粒的粒度分布,其適用于工業(yè)化產(chǎn)品粒徑的檢測,測量粒徑范圍為1nm~5μm的懸浮液。
動態(tài)光散射法繪制的核殼粒徑增長速率坐標圖
優(yōu)點:速度快,可獲得精確的粒徑分布。
缺點:結(jié)果受樣品的粒度大小以及分布影響較大,只適用于測量粒度分布較窄的顆粒樣品;測試中應(yīng)不發(fā)生明顯的團聚和快速沉降現(xiàn)象。
4.X射線衍射線寬法(XRD):XRD測量納米材料晶粒大小的原理是當材料晶粒的尺寸為納米尺度時,其衍射峰型發(fā)生相應(yīng)的寬化,通過對寬化的峰型進行測定并利用Scherrer公式計算得到不同晶面的晶粒尺寸。對于具體的晶粒而言,衍射hkl的面間距dhkl和晶面層數(shù)N的乘積就是晶粒在垂直于此晶面方向上的粒度Dhkl。試樣中晶粒大小可采用Scherrer公式進行計算:
式中:λ-X射線波長;θ-布拉格角(半衍射角);βhkl-衍射hkl的半峰寬。
X射線衍射法(XRD)表征材料晶相結(jié)構(gòu)
優(yōu)點:可用于未知物的成分鑒定。
缺點:靈敏度較低;定量分析的準確度不高;測得的晶粒大小不能判斷晶粒之間是否發(fā)生緊密的團聚;需要注意樣品中不能存在微觀應(yīng)力。
5.X射線小角散射法(SAXS)
當X射線照到材料上時,如果材料內(nèi)部存在納米尺寸的密度不均勻區(qū)域,則會在入射X射線束的周圍2°~5°的小角度范圍內(nèi)出現(xiàn)散射X射線。當材料的晶粒尺寸越細時,中心散射就越漫散,且這種現(xiàn)象與材料的晶粒內(nèi)部結(jié)構(gòu)無關(guān)。SAXS法通過測定中心的散射圖譜就可以計算出材料的粒徑分布。SAXS可用于納米級尺度的各種金屬、無機非金屬、有機聚合物粉末以及生物大分子、膠體溶液、磁性液體等顆粒尺寸分布的測定;也可對各種材料中的納米級孔洞、偏聚區(qū)、析出相等的尺寸進行分析研究。
微聚焦X射線小角散射顯微層析成像原理示意圖
優(yōu)點:操作簡單;對于單一材質(zhì)的球形粉末,該方法測量粒度有著很好的準確性。
缺點:不能有效區(qū)分來自顆?;蛭⒖椎纳⑸?,且對于密集的散射體系,會發(fā)生顆粒散射之間的干涉效應(yīng),導致測量結(jié)果有所偏低。
6.X射線光電子能譜法(XPS)
XPS法以X射線作為激發(fā)源,基于納米材料表面被激發(fā)出來的電子所具有的特征能量分布(能譜)而對其表面元素進行分析,也稱為化學分析光電子能譜(ESCA)。由于原子在某一特定軌道的結(jié)合能依賴于原子周圍的化學環(huán)境,因而從X射線光電子能譜圖指紋特征可進行除氫、氦外的各種元素的定性分析和半定量分析。
石墨烯類多孔碳納米板樣品的XPS光譜
優(yōu)點:絕對靈敏度很高,在分析時所需的樣品量很少。
缺點:但相對靈敏度不高,且對液體樣品分析比較麻煩;影響X射線定量分析準確性的因素相當復雜。
7.掃描探針顯微鏡法(SPM)
SPM法是利用測量探針與樣品表面相互作用所產(chǎn)生的信號,在納米級或原子級水平研究物質(zhì)表面的原子和分子的幾何結(jié)構(gòu)及相關(guān)的物理、化學性質(zhì)的分析技術(shù),尤以原子力顯微鏡(AFM)為代表,其不僅能直接觀測納米材料表面的形貌和結(jié)構(gòu),還可對物質(zhì)表面進行可控的局部加工。
氧化石墨烯的AFM
優(yōu)點:在納米材料測量和表征方面具有*性優(yōu)勢。
缺點:由于標準物質(zhì)的缺少,在實際操作中缺乏實施性。
8.拉曼光譜法
拉曼光譜法低維納米材料的方法。它基于拉曼效應(yīng)的非彈性光散射分析技術(shù),是由激發(fā)光的光子與材料的晶格振動相互作用所產(chǎn)生的非彈性散射光譜,可用來對材料進行指紋分析。拉曼頻移與物質(zhì)分子的轉(zhuǎn)動和振動能級有關(guān),不同的物質(zhì)產(chǎn)生不同的拉曼頻移。拉曼頻率特征可提供有價值的結(jié)構(gòu)信息。利用拉曼光譜可以對納米材料進行分子結(jié)構(gòu)、鍵態(tài)特征分析、晶粒平均粒徑的測量等。
單晶電極表面ORR過程的原位拉曼光譜圖
優(yōu)點:靈敏度高、不破壞樣品、方便快速。
缺點:不同振動峰重疊和拉曼散射強度容易受光學系統(tǒng)參數(shù)等因素的影響;在進行傅里葉變換光譜分析時,常出現(xiàn)曲線的非線性問題等。
小結(jié)
納米材料粒度的測試方法多種多樣,但不同的測試方法對應(yīng)的測量原理不同,因而不同測試方法之間不能進行橫向比較。不同的粒度分析方法均有其一定的適用范圍以及對應(yīng)的樣品處理方法,所以在實際檢測時應(yīng)綜合考慮納米材料的特性、測量目的、經(jīng)濟成本等多方面因素,確定最終選用的測試方法。